summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/k_page_bitmap.h
blob: c97b3dc0b1141c2168523afba7b4e1273f0789bc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#pragma once

#include <array>
#include <bit>

#include "common/alignment.h"
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/common_types.h"
#include "common/tiny_mt.h"
#include "core/hle/kernel/k_system_control.h"

namespace Kernel {

class KPageBitmap {
private:
    class RandomBitGenerator {
    private:
        Common::TinyMT rng{};
        u32 entropy{};
        u32 bits_available{};

    private:
        void RefreshEntropy() {
            entropy = rng.GenerateRandomU32();
            bits_available = static_cast<u32>(Common::BitSize<decltype(entropy)>());
        }

        bool GenerateRandomBit() {
            if (bits_available == 0) {
                this->RefreshEntropy();
            }

            const bool rnd_bit = (entropy & 1) != 0;
            entropy >>= 1;
            --bits_available;
            return rnd_bit;
        }

    public:
        RandomBitGenerator() {
            rng.Initialize(static_cast<u32>(KSystemControl::GenerateRandomU64()));
        }

        std::size_t SelectRandomBit(u64 bitmap) {
            u64 selected = 0;

            u64 cur_num_bits = Common::BitSize<decltype(bitmap)>() / 2;
            u64 cur_mask = (1ULL << cur_num_bits) - 1;

            while (cur_num_bits) {
                const u64 low = (bitmap >> 0) & cur_mask;
                const u64 high = (bitmap >> cur_num_bits) & cur_mask;

                bool choose_low;
                if (high == 0) {
                    // If only low val is set, choose low.
                    choose_low = true;
                } else if (low == 0) {
                    // If only high val is set, choose high.
                    choose_low = false;
                } else {
                    // If both are set, choose random.
                    choose_low = this->GenerateRandomBit();
                }

                // If we chose low, proceed with low.
                if (choose_low) {
                    bitmap = low;
                    selected += 0;
                } else {
                    bitmap = high;
                    selected += cur_num_bits;
                }

                // Proceed.
                cur_num_bits /= 2;
                cur_mask >>= cur_num_bits;
            }

            return selected;
        }
    };

public:
    static constexpr std::size_t MaxDepth = 4;

private:
    std::array<u64*, MaxDepth> bit_storages{};
    RandomBitGenerator rng{};
    std::size_t num_bits{};
    std::size_t used_depths{};

public:
    KPageBitmap() = default;

    constexpr std::size_t GetNumBits() const {
        return num_bits;
    }
    constexpr s32 GetHighestDepthIndex() const {
        return static_cast<s32>(used_depths) - 1;
    }

    u64* Initialize(u64* storage, std::size_t size) {
        // Initially, everything is un-set.
        num_bits = 0;

        // Calculate the needed bitmap depth.
        used_depths = static_cast<std::size_t>(GetRequiredDepth(size));
        ASSERT(used_depths <= MaxDepth);

        // Set the bitmap pointers.
        for (s32 depth = this->GetHighestDepthIndex(); depth >= 0; depth--) {
            bit_storages[depth] = storage;
            size = Common::AlignUp(size, Common::BitSize<u64>()) / Common::BitSize<u64>();
            storage += size;
        }

        return storage;
    }

    s64 FindFreeBlock(bool random) {
        uintptr_t offset = 0;
        s32 depth = 0;

        if (random) {
            do {
                const u64 v = bit_storages[depth][offset];
                if (v == 0) {
                    // If depth is bigger than zero, then a previous level indicated a block was
                    // free.
                    ASSERT(depth == 0);
                    return -1;
                }
                offset = offset * Common::BitSize<u64>() + rng.SelectRandomBit(v);
                ++depth;
            } while (depth < static_cast<s32>(used_depths));
        } else {
            do {
                const u64 v = bit_storages[depth][offset];
                if (v == 0) {
                    // If depth is bigger than zero, then a previous level indicated a block was
                    // free.
                    ASSERT(depth == 0);
                    return -1;
                }
                offset = offset * Common::BitSize<u64>() + std::countr_zero(v);
                ++depth;
            } while (depth < static_cast<s32>(used_depths));
        }

        return static_cast<s64>(offset);
    }

    void SetBit(std::size_t offset) {
        this->SetBit(this->GetHighestDepthIndex(), offset);
        num_bits++;
    }

    void ClearBit(std::size_t offset) {
        this->ClearBit(this->GetHighestDepthIndex(), offset);
        num_bits--;
    }

    bool ClearRange(std::size_t offset, std::size_t count) {
        s32 depth = this->GetHighestDepthIndex();
        u64* bits = bit_storages[depth];
        std::size_t bit_ind = offset / Common::BitSize<u64>();
        if (count < Common::BitSize<u64>()) {
            const std::size_t shift = offset % Common::BitSize<u64>();
            ASSERT(shift + count <= Common::BitSize<u64>());
            // Check that all the bits are set.
            const u64 mask = ((u64(1) << count) - 1) << shift;
            u64 v = bits[bit_ind];
            if ((v & mask) != mask) {
                return false;
            }

            // Clear the bits.
            v &= ~mask;
            bits[bit_ind] = v;
            if (v == 0) {
                this->ClearBit(depth - 1, bit_ind);
            }
        } else {
            ASSERT(offset % Common::BitSize<u64>() == 0);
            ASSERT(count % Common::BitSize<u64>() == 0);
            // Check that all the bits are set.
            std::size_t remaining = count;
            std::size_t i = 0;
            do {
                if (bits[bit_ind + i++] != ~u64(0)) {
                    return false;
                }
                remaining -= Common::BitSize<u64>();
            } while (remaining > 0);

            // Clear the bits.
            remaining = count;
            i = 0;
            do {
                bits[bit_ind + i] = 0;
                this->ClearBit(depth - 1, bit_ind + i);
                i++;
                remaining -= Common::BitSize<u64>();
            } while (remaining > 0);
        }

        num_bits -= count;
        return true;
    }

private:
    void SetBit(s32 depth, std::size_t offset) {
        while (depth >= 0) {
            std::size_t ind = offset / Common::BitSize<u64>();
            std::size_t which = offset % Common::BitSize<u64>();
            const u64 mask = u64(1) << which;

            u64* bit = std::addressof(bit_storages[depth][ind]);
            u64 v = *bit;
            ASSERT((v & mask) == 0);
            *bit = v | mask;
            if (v) {
                break;
            }
            offset = ind;
            depth--;
        }
    }

    void ClearBit(s32 depth, std::size_t offset) {
        while (depth >= 0) {
            std::size_t ind = offset / Common::BitSize<u64>();
            std::size_t which = offset % Common::BitSize<u64>();
            const u64 mask = u64(1) << which;

            u64* bit = std::addressof(bit_storages[depth][ind]);
            u64 v = *bit;
            ASSERT((v & mask) != 0);
            v &= ~mask;
            *bit = v;
            if (v) {
                break;
            }
            offset = ind;
            depth--;
        }
    }

private:
    static constexpr s32 GetRequiredDepth(std::size_t region_size) {
        s32 depth = 0;
        while (true) {
            region_size /= Common::BitSize<u64>();
            depth++;
            if (region_size == 0) {
                return depth;
            }
        }
    }

public:
    static constexpr std::size_t CalculateManagementOverheadSize(std::size_t region_size) {
        std::size_t overhead_bits = 0;
        for (s32 depth = GetRequiredDepth(region_size) - 1; depth >= 0; depth--) {
            region_size =
                Common::AlignUp(region_size, Common::BitSize<u64>()) / Common::BitSize<u64>();
            overhead_bits += region_size;
        }
        return overhead_bits * sizeof(u64);
    }
};

} // namespace Kernel